Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity

  1. Kotaro Shirakawa
  2. Lan Wang
  3. Na Man
  4. Jasna Maksimoska
  5. Alexander W Sorum
  6. Hyung W Lim
  7. Intelly S Lee
  8. Tadahiro Shimazu
  9. John C Newman
  10. Sebastian Schröder
  11. Melanie Ott
  12. Ronen Marmorstein
  13. Jordan Meier
  14. Stephen Nimer
  15. Eric Verdin  Is a corresponding author
  1. Gladstone Institutes, United States
  2. University of Miami, United States
  3. University of Pennsylvania, United States
  4. National Cancer Institute, United States

Abstract

Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

Article and author information

Author details

  1. Kotaro Shirakawa

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lan Wang

    University of Miami, Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Na Man

    University of Miami, Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jasna Maksimoska

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander W Sorum

    Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hyung W Lim

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Intelly S Lee

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Tadahiro Shimazu

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. John C Newman

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sebastian Schröder

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Melanie Ott

    Gladstone Institutes, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ronen Marmorstein

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jordan Meier

    Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Stephen Nimer

    University of Miami, Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Eric Verdin

    Gladstone Institutes, San Francisco, United States
    For correspondence
    everdin@gladstone.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ali Shilatifard, Northwestern University Feinberg School of Medicine, United States

Version history

  1. Received: August 26, 2015
  2. Accepted: May 26, 2016
  3. Accepted Manuscript published: May 31, 2016 (version 1)
  4. Accepted Manuscript updated: June 9, 2016 (version 2)
  5. Version of Record published: July 4, 2016 (version 3)

Copyright

© 2016, Shirakawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,638
    views
  • 1,192
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kotaro Shirakawa
  2. Lan Wang
  3. Na Man
  4. Jasna Maksimoska
  5. Alexander W Sorum
  6. Hyung W Lim
  7. Intelly S Lee
  8. Tadahiro Shimazu
  9. John C Newman
  10. Sebastian Schröder
  11. Melanie Ott
  12. Ronen Marmorstein
  13. Jordan Meier
  14. Stephen Nimer
  15. Eric Verdin
(2016)
Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity
eLife 5:e11156.
https://doi.org/10.7554/eLife.11156

Share this article

https://doi.org/10.7554/eLife.11156

Further reading

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.

    1. Cancer Biology
    Samuel Pawel, Rachel Heyard ... Leonhard Held
    Research Article

    In several large-scale replication projects, statistically non-significant results in both the original and the replication study have been interpreted as a ‘replication success.’ Here, we discuss the logical problems with this approach: Non-significance in both studies does not ensure that the studies provide evidence for the absence of an effect and ‘replication success’ can virtually always be achieved if the sample sizes are small enough. In addition, the relevant error rates are not controlled. We show how methods, such as equivalence testing and Bayes factors, can be used to adequately quantify the evidence for the absence of an effect and how they can be applied in the replication setting. Using data from the Reproducibility Project: Cancer Biology, the Experimental Philosophy Replicability Project, and the Reproducibility Project: Psychology we illustrate that many original and replication studies with ‘null results’ are in fact inconclusive. We conclude that it is important to also replicate studies with statistically non-significant results, but that they should be designed, analyzed, and interpreted appropriately.