Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity

  1. Prithvi Raj
  2. Ekta Rai
  3. Ran Song
  4. Shaheen Khan
  5. Benjamin E Wakeland
  6. Kasthuribai Viswanathan
  7. Carlos Arana
  8. Chaoying Liang
  9. Bo Zhang
  10. Igor Dozmorov
  11. Ferdicia Carr-Johnson
  12. Mitja Mitrovic
  13. Graham B Wiley
  14. Jennifer A Kelly
  15. Bernard R Lauwerys
  16. Nancy J Olsen
  17. Chris Cotsapas
  18. Christine K Garcia
  19. Carol A Wise
  20. John B Harley
  21. Swapan K Nath
  22. Judith A James
  23. Chaim O Jacob
  24. Betty P Tsao
  25. Chandrashekhar Pasare
  26. David R Karp
  27. Quan Zhen Li
  28. Patrick M Gaffney
  29. Edward K Wakeland  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Yale School of Medicine, United States
  3. Oklahoma Medical Research Foundation, United States
  4. Université catholique de Louvain, Belgium
  5. Penn State Medical School, United States
  6. Texas Scottish Rite Hospital for Children, United States
  7. Cincinnati Children's Hospital Medical Center, United States
  8. University of Southern California, United States
  9. University of California, Los Angeles, United States

Abstract

Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to >4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.

Article and author information

Author details

  1. Prithvi Raj

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ekta Rai

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ran Song

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shaheen Khan

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin E Wakeland

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kasthuribai Viswanathan

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carlos Arana

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Chaoying Liang

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bo Zhang

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Igor Dozmorov

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ferdicia Carr-Johnson

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Mitja Mitrovic

    Department of Neurology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Graham B Wiley

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jennifer A Kelly

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Bernard R Lauwerys

    Pole de pathologies rhumatismales, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  16. Nancy J Olsen

    Division of Rheumatology, Department of Medicine, Penn State Medical School, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Chris Cotsapas

    Department of Neurology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Christine K Garcia

    Eugene McDermott Center for Human Growth and Development, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Carol A Wise

    Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. John B Harley

    Cincinnati VA Medical Center, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Swapan K Nath

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Judith A James

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Chaim O Jacob

    Department of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Betty P Tsao

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Chandrashekhar Pasare

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. David R Karp

    Rheumatic Diseases Division, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Quan Zhen Li

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Patrick M Gaffney

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Edward K Wakeland

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    edward.wakeland@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jonathan Flint, Wellcome Trust Centre for Human Genetics, United Kingdom

Ethics

Human subjects: All the study subjects gave their written informed consent for the study. All the research protocols and methods employed were approved by UT Southwestern Institutional Review Board.

Version history

  1. Received: October 5, 2015
  2. Accepted: February 13, 2016
  3. Accepted Manuscript published: February 15, 2016 (version 1)
  4. Version of Record published: March 17, 2016 (version 2)

Copyright

© 2016, Raj et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,798
    views
  • 1,101
    downloads
  • 106
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prithvi Raj
  2. Ekta Rai
  3. Ran Song
  4. Shaheen Khan
  5. Benjamin E Wakeland
  6. Kasthuribai Viswanathan
  7. Carlos Arana
  8. Chaoying Liang
  9. Bo Zhang
  10. Igor Dozmorov
  11. Ferdicia Carr-Johnson
  12. Mitja Mitrovic
  13. Graham B Wiley
  14. Jennifer A Kelly
  15. Bernard R Lauwerys
  16. Nancy J Olsen
  17. Chris Cotsapas
  18. Christine K Garcia
  19. Carol A Wise
  20. John B Harley
  21. Swapan K Nath
  22. Judith A James
  23. Chaim O Jacob
  24. Betty P Tsao
  25. Chandrashekhar Pasare
  26. David R Karp
  27. Quan Zhen Li
  28. Patrick M Gaffney
  29. Edward K Wakeland
(2016)
Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity
eLife 5:e12089.
https://doi.org/10.7554/eLife.12089

Share this article

https://doi.org/10.7554/eLife.12089

Further reading

    1. Genetics and Genomics
    Mohammad Alfatah, Jolyn Jia Jia Lim ... Frank Eisenhaber
    Research Article

    Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1–MItochondria–TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.