TissueMiner: a multiscale analysis toolkit to quantify how cellular processes create tissue dynamics

  1. Raphaël Etournay
  2. Matthias Merkel
  3. Marko Popović
  4. Holger Brandl
  5. Natalie A Dye
  6. Benoît Aigouy
  7. Guillaume Salbreux
  8. Suzanne Eaton
  9. Frank Jülicher  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Max Planck Institute for the Physics of Complex Systems, Germany
  3. Institut de Biologie du Développement de Marseille, France

Abstract

Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods for relating tissue shape changes to cell dynamics have not yet been widely applied by biologists because of their technical complexity. We therefore developed a database format that stores cellular connectivity and geometry information of deforming epithelial tissues, and computational tools to interrogate it and perform multi-scale analysis of morphogenesis. We provide tutorials for this computational framework, called TissueMiner, and demonstrate its capabilities by comparing cell and tissue dynamics in vein and inter-vein subregions of the Drosophila pupal wing. These analyses reveal an unexpected role for convergent extension in shaping wing veins.

Article and author information

Author details

  1. Raphaël Etournay

    Division of cell polarity, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  2. Matthias Merkel

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Marko Popović

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  4. Holger Brandl

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  5. Natalie A Dye

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  6. Benoît Aigouy

    Institut de Biologie du Développement de Marseille, Marseille, France
    Competing interests
    No competing interests declared.
  7. Guillaume Salbreux

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  8. Suzanne Eaton

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    Suzanne Eaton, Reviewing editor, eLife.
  9. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    For correspondence
    julicher@pks.mpg.de
    Competing interests
    Frank Jülicher, Reviewing editor, eLife.

Reviewing Editor

  1. W James Nelson, Stanford University, United States

Version history

  1. Received: February 5, 2016
  2. Accepted: May 25, 2016
  3. Accepted Manuscript published: May 26, 2016 (version 1)
  4. Accepted Manuscript updated: May 27, 2016 (version 2)
  5. Version of Record published: July 15, 2016 (version 3)

Copyright

© 2016, Etournay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,106
    views
  • 1,195
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raphaël Etournay
  2. Matthias Merkel
  3. Marko Popović
  4. Holger Brandl
  5. Natalie A Dye
  6. Benoît Aigouy
  7. Guillaume Salbreux
  8. Suzanne Eaton
  9. Frank Jülicher
(2016)
TissueMiner: a multiscale analysis toolkit to quantify how cellular processes create tissue dynamics
eLife 5:e14334.
https://doi.org/10.7554/eLife.14334

Share this article

https://doi.org/10.7554/eLife.14334

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.