Crosstalk between the chloroplast protein import and SUMO systems revealed through genetic and molecular investigation in Arabidopsis

  1. Samuel Watson
  2. Na Li
  3. Yiting Ye
  4. Feijie Wu
  5. Qihua Ling
  6. R Paul Jarvis  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Institute of Plant Physiology and Ecology, China
  3. University of Leicester, United Kingdom

Abstract

The chloroplast proteome contains thousands of different proteins that are encoded by the nuclear genome. These proteins are imported into the chloroplast via the action of the TOC translocase and associated downstream systems. Our recent work has revealed that the stability of the TOC complex is dynamically regulated by the ubiquitin-dependent chloroplast-associated protein degradation (CHLORAD) pathway. Here, we demonstrate that the TOC complex is also regulated by the SUMO system. Arabidopsis mutants representing almost the entire SUMO conjugation pathway can partially suppress the phenotype of ppi1, a pale-yellow mutant lacking the Toc33 protein. This suppression is linked to increased abundance of TOC proteins and improvements in chloroplast development. Moreover, data from molecular and biochemical experiments support a model in which the SUMO system directly regulates TOC protein stability. Thus, we have identified a regulatory link between the SUMO system and the chloroplast protein import machinery.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Samuel Watson

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Na Li

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Yiting Ye

    Institute of Plant Physiology and Ecology, Shanghai, China
    Competing interests
    No competing interests declared.
  4. Feijie Wu

    University of Leicester, Leicester, United Kingdom
    Competing interests
    No competing interests declared.
  5. Qihua Ling

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. R Paul Jarvis

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    paul.jarvis@plants.ox.ac.uk
    Competing interests
    R Paul Jarvis, The application of CHLORAD as a technology for crop improvement is covered by a patent application (no. WO2019/171091 A)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2127-5671

Funding

Biotechnology and Biological Sciences Research Council (BB/K018442/1,BB/N006372/1,BB/R016984/1,BB/R009333/1)

  • R Paul Jarvis

Biotechnology and Biological Sciences Research Council (Interdisciplinary Bioscience Doctoral Training Partnership)

  • Samuel Watson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Heather E McFarlane, University of Toronto, Canada

Version history

  1. Received: July 11, 2020
  2. Preprint posted: July 22, 2020 (view preprint)
  3. Accepted: September 1, 2021
  4. Accepted Manuscript published: September 2, 2021 (version 1)
  5. Version of Record published: October 7, 2021 (version 2)

Copyright

© 2021, Watson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,024
    views
  • 370
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel Watson
  2. Na Li
  3. Yiting Ye
  4. Feijie Wu
  5. Qihua Ling
  6. R Paul Jarvis
(2021)
Crosstalk between the chloroplast protein import and SUMO systems revealed through genetic and molecular investigation in Arabidopsis
eLife 10:e60960.
https://doi.org/10.7554/eLife.60960

Share this article

https://doi.org/10.7554/eLife.60960

Further reading

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.