Mutation analysis links angioimmunoblastic T-cell lymphoma to clonal hematopoiesis and smoking

  1. Shuhua Cheng
  2. Wei Zhang
  3. Giorgio Inghirami
  4. Wayne Tam  Is a corresponding author
  1. Weill Cornell Medicine, United States

Abstract

Background:

Although advance has been made in understanding the pathogenesis of mature T-cell neoplasms, the initiation and progression of angioimmunoblastic T cell lymphoma (AITL) and peripheral T cell lymphoma, not otherwise specified (PTCL-NOS), remains poorly understood. A subset of AITL/PTCL-NOS patients develop concomitant hematologic neoplasms (CHN), and a biomarker to predict this risk is lacking.

Methods:

We generated and analyzed the mutation profiles through 537-gene targeted sequencing of the primary tumors and matched bone marrow/peripheral blood samples in 25 patients with AITL and 2 with PTCL-NOS.

Results:

Clonal hematopoiesis (CH)-associated genomic alterations, found in 70.4% of the AITL/PTCL-NOS patients, were shared among CH and T-cell lymphoma, as well as concomitant myeloid neoplasms or diffuse large B-cell lymphoma (DLBCL) that developed before or after AITL. Aberrant AID/APOBEC activity-associated and tobacco smoking-associated mutational signatures were respectively enriched in the early CH-associated mutations and late non-CH associated mutations during AITL/PTCL-NOS development. Moreover, analysis showed that the presence of CH harboring ≥ 2 pathogenic TET2 variants with ≥ 15% of allele burden conferred higher risk for CHN (P = 0.0006, hazard ratio = 14.01, PPV=88.9%, NPV=92.1%).

Conclusion:

We provided genetic evidence that AITL/PTCL-NOS, CH, CHN can frequently arise from common mutated hematopoietic precursor clones. Our data also suggests smoking exposure as a potential risk factor for AITL/PTCL-NOS progression. These findings provide insights into the cell origin and etiology of AITL and PTCL-NOS and provide a novel stratification biomarker for CHN risk in AITL patients.

Funding:

R01 grant (CA194547) from the National Cancer Institute to WT.

Data availability

All relevant data are included in this manuscript and the supplementary files.

The following previously published data sets were used

Article and author information

Author details

  1. Shuhua Cheng

    Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wei Zhang

    Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giorgio Inghirami

    Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wayne Tam

    Weill Cornell Medicine, New York, United States
    For correspondence
    wtam@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4283-0005

Funding

National Cancer Institute (R01 CA194547)

  • Wayne Tam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adam Olszewski, Brown University, United States

Ethics

Human subjects: This study was conducted in accordance with the Declaration of Helsinki regulations of the protocols approved by the Institutional Review Board of Weill Cornell Medicine, New York, USA. Written consent for use of the samples for research was obtained from patients or their guardians.(#0107004999)

Version history

  1. Preprint posted: November 26, 2020 (view preprint)
  2. Received: January 11, 2021
  3. Accepted: September 13, 2021
  4. Accepted Manuscript published: September 28, 2021 (version 1)
  5. Version of Record published: September 29, 2021 (version 2)

Copyright

© 2021, Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,175
    views
  • 203
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuhua Cheng
  2. Wei Zhang
  3. Giorgio Inghirami
  4. Wayne Tam
(2021)
Mutation analysis links angioimmunoblastic T-cell lymphoma to clonal hematopoiesis and smoking
eLife 10:e66395.
https://doi.org/10.7554/eLife.66395

Share this article

https://doi.org/10.7554/eLife.66395

Further reading

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.