Associations of topic-specific peer review outcomes and institute and center award rates with funding disparities at the National Institutes of Health

  1. Michael S Lauer  Is a corresponding author
  2. Jamie Doyle
  3. Joy Wang
  4. Deepshikha Roychowdhury
  1. National Institutes of Health, United States
  2. National Center for Advancing Translational Sciences, United States

Abstract

A previous report found an association of topic choice with race-based funding disparities among R01 applications submitted to the National Institutes of Health ('NIH') between 2011-2015. Applications submitted by African American or Black ('AAB') Principal Investigators ('PIs') skewed toward a small number of topics that were less likely to be funded (or 'awarded'). It was suggested that lower award rates may be related to topic-related biases of peer reviewers. However, the report did not account for differential funding ecologies among NIH Institutes and Centers ('ICs'). In a re-analysis, we find that 10% of 148 topics account for 50% of applications submitted by AAB PIs. These applications on 'AAB Preferred' topics were funded at lower rates, but peer review outcomes were similar. The lower rate of funding for these topics was primarily due to their assignment to ICs with lower award rates, not to peer-reviewer preferences.

Data availability

The authors have provided the de-identified data frame (in .RData format) along with three R markdown files that will make it possible for interested readers to reproduce the main paper and the two appendices (including all tables, figures, and numbers in the text).

Article and author information

Author details

  1. Michael S Lauer

    Office of the Director, National Institutes of Health, Bethesda, United States
    For correspondence
    Michael.Lauer@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9217-8177
  2. Jamie Doyle

    Division of Clinical Innovation, National Center for Advancing Translational Sciences, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joy Wang

    Office of Extramural Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Deepshikha Roychowdhury

    Office of Extramural Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

The authors conducted this work as part of their official US government duties.

Reviewing Editor

  1. Cliff J Rosen, Maine Medical Center Research Institute, United States

Version history

  1. Received: February 3, 2021
  2. Accepted: April 8, 2021
  3. Accepted Manuscript published: April 13, 2021 (version 1)
  4. Version of Record published: April 30, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,326
    views
  • 202
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael S Lauer
  2. Jamie Doyle
  3. Joy Wang
  4. Deepshikha Roychowdhury
(2021)
Associations of topic-specific peer review outcomes and institute and center award rates with funding disparities at the National Institutes of Health
eLife 10:e67173.
https://doi.org/10.7554/eLife.67173

Share this article

https://doi.org/10.7554/eLife.67173

Further reading

    1. Computational and Systems Biology
    Maksim Kleverov, Daria Zenkova ... Alexey A Sergushichev
    Research Article

    Transcriptomic profiling became a standard approach to quantify a cell state, which led to accumulation of huge amount of public gene expression datasets. However, both reuse of these datasets or analysis of newly generated ones requires significant technical expertise. Here we present Phantasus - a user-friendly web-application for interactive gene expression analysis which provides a streamlined access to more than 96000 public gene expression datasets, as well as allows analysis of user-uploaded datasets. Phantasus integrates an intuitive and highly interactive JavaScript-based heatmap interface with an ability to run sophisticated R-based analysis methods. Overall Phantasus allows users to go all the way from loading, normalizing and filtering data to doing differential gene expression and downstream analysis. Phantasus can be accessed on-line at https://alserglab.wustl.edu/phantasus or can be installed locally from Bioconductor (https://bioconductor.org/packages/phantasus). Phantasus source code is available at https://github.com/ctlab/phantasus under MIT license.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.