Measuring the tolerance of the genetic code to altered codon size

  1. Erika Alden DeBenedictis  Is a corresponding author
  2. Dieter Söll
  3. Kevin M Esvelt
  1. Massachusetts Institue of Technology, United States
  2. Yale University, United States
  3. Massachusetts Institute of Technology, United States

Abstract

Translation using four-base codons occurs in both natural and synthetic systems. What constraints contributed to the universal adoption of a triplet-codon, rather than quadruplet-codon, genetic code? Here, we investigate the tolerance of the Escherichia coli genetic code to tRNA mutations that increase codon size. We found that tRNAs from all twenty canonical isoacceptor classes can be converted to functional quadruplet tRNAs (qtRNAs). Many of these selectively incorporate a single amino acid in response to a specified four-base codon, as confirmed with mass spectrometry. However, efficient quadruplet codon translation often requires multiple tRNA mutations. Moreover, while tRNAs were largely amenable to quadruplet conversion, only nine of the twenty aminoacyl tRNA synthetases tolerate quadruplet anticodons. These may constitute a functional and mutually orthogonal set, but one that sharply limits the chemical alphabet available to a nascent all-quadruplet code. Our results suggest that the triplet codon code was selected because it is simpler and sufficient, not because a quadruplet codon code is unachievable. These data provide a blueprint for synthetic biologists to deliberately engineer an all-quadruplet expanded genetic code.

Data availability

All luminescence raw data are compiled in Figure 5A and provided as Source Data 1. Raw spectra have been deposited in the PRIDE database, dataset identifier PXD031925 and 10.6019/PXD031925.

The following data sets were generated

Article and author information

Author details

  1. Erika Alden DeBenedictis

    Department of Biological Engineering, Massachusetts Institue of Technology, Cambridge, United States
    For correspondence
    erika.alden@mit.edu
    Competing interests
    Erika Alden DeBenedictis, filed US Patent 16405380 on tRNA sequences engineered in this work...
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7933-2651
  2. Dieter Söll

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3077-8986
  3. Kevin M Esvelt

    Department of Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    Kevin M Esvelt, filed US Patent 16405380 on tRNA sequences engineered in this work...
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8797-3945

Funding

National Institute of General Medical Sciences (R35GM122560)

  • Dieter Söll

National Institute of General Medical Sciences (3R35GM122560-05W1)

  • Dieter Söll

National Institute of Allergy and Infectious Diseases (F31 AI145181-01)

  • Erika Alden DeBenedictis

National Institute of Diabetes and Digestive and Kidney Diseases (R00 DK102669-01)

  • Kevin M Esvelt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Version history

  1. Preprint posted: April 26, 2021 (view preprint)
  2. Received: January 10, 2022
  3. Accepted: March 15, 2022
  4. Accepted Manuscript published: March 16, 2022 (version 1)
  5. Version of Record published: May 11, 2022 (version 2)

Copyright

© 2022, DeBenedictis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,476
    views
  • 583
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erika Alden DeBenedictis
  2. Dieter Söll
  3. Kevin M Esvelt
(2022)
Measuring the tolerance of the genetic code to altered codon size
eLife 11:e76941.
https://doi.org/10.7554/eLife.76941

Share this article

https://doi.org/10.7554/eLife.76941

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.