Abstract

Most studies of cohesin function consider the Stromalin Antigen (STAG/SA) proteins as core complex members given their ubiquitous interaction with the cohesin ring. Here, we provide functional data to support the notion that the SA subunit is not a mere passenger in this structure, but instead plays a key role in the localization of cohesin to diverse biological processes and promotes loading of the complex at these sites. We show that in cells acutely depleted for RAD21, SA proteins remain bound to chromatin, cluster in 3D and interact with CTCF, as well as with a wide range of RNA binding proteins involved in multiple RNA processing mechanisms. Accordingly, SA proteins interact with RNA, RNA binding proteins and R-loops, even in the absence of cohesin. Our results place SA1 on chromatin upstream of the cohesin ring and reveal a role for SA1 in cohesin loading which is independent of NIPBL, the canonical cohesin loader. We propose that SA1 takes advantage of structural R-loop platforms to link cohesin loading and chromatin structure with diverse functions. Since SA proteins are pan-cancer targets, and R-loops play an increasingly prevalent role in cancer biology, our results have important implications for the mechanistic understanding of SA proteins in cancer and disease.

Data availability

All data has been made freely available. Please see Page 21 of the manuscript for Accession numbers.

The following data sets were generated

Article and author information

Author details

  1. Hayley Porter

    Research Department of Cancer Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Yang Li

    Research Department of Cancer Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria Victoria  Neguembor

    Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1583-1304
  4. Manuel Beltran

    Regulatory Genomics Group, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Wazeer Varsally

    Research Department of Cancer Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Martin

    Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8801-6637
  7. Manuel Tavares Cornejo

    Regulatory Genomics Group, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Dubravka Pezic

    Research Department of Cancer Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Amandeep Bhamra

    Proteomics Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Silvia Surinova

    Proteomics Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Richard G Jenner

    Regulatory Genomics Group, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Maria Pia Cosma

    Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4207-5097
  13. Suzana Hadjur

    Research Department of Cancer Biology, University College London, London, United Kingdom
    For correspondence
    s.hadjur@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3146-3118

Funding

Wellcome Trust (106985/Z/15/Z)

  • Suzana Hadjur

Cancer Research UK (PhD studentship)

  • Hayley Porter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrés Aguilera, CABIMER, Universidad de Sevilla, Spain

Version history

  1. Preprint posted: February 20, 2021 (view preprint)
  2. Received: April 10, 2022
  3. Accepted: April 2, 2023
  4. Accepted Manuscript published: April 3, 2023 (version 1)
  5. Version of Record published: June 2, 2023 (version 2)

Copyright

© 2023, Porter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,087
    views
  • 445
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hayley Porter
  2. Yang Li
  3. Maria Victoria  Neguembor
  4. Manuel Beltran
  5. Wazeer Varsally
  6. Laura Martin
  7. Manuel Tavares Cornejo
  8. Dubravka Pezic
  9. Amandeep Bhamra
  10. Silvia Surinova
  11. Richard G Jenner
  12. Maria Pia Cosma
  13. Suzana Hadjur
(2023)
Cohesin-independent STAG proteins interact with RNA and R-loops and promote complex loading
eLife 12:e79386.
https://doi.org/10.7554/eLife.79386

Share this article

https://doi.org/10.7554/eLife.79386

Further reading

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.