Discovery and biological evaluation of a potent small molecule CRM1 inhibitor for its selective ablation of extranodal NK/T cell lymphoma

  1. He Liu
  2. Meisuo Liu
  3. Xibao Tian
  4. Haina Wang
  5. Jiujiao Gao
  6. Hanrui Li
  7. Zhehuan Zhao
  8. Yu Liu
  9. Caigang Liu  Is a corresponding author
  10. Xuan Chen
  11. Yongliang Yang  Is a corresponding author
  1. Dalian University of Technology, China
  2. Shengjing Hospital of China Medical University, China

Abstract

Background: The overactivation of NF-κB signaling is a key hallmark for the pathogenesis of extranodal natural killer/T cell lymphoma (ENKTL), a very aggressive subtype of non-Hodgkin's lymphoma yet with rather limited control strategies. Previously, we found that the dysregulated exportin-1 (also known as CRM1) is mainly responsible for tumor cells to evade apoptosis and promote tumor-associated pathways such as NF-κB signaling.

Methods: Herein we reported the discovery and biological evaluation of a potent small molecule CRM1 inhibitor, LFS-1107. We validated that CRM1 is a major cellular target of LFS-1107 by biolayer interferometry assay (BLI) and the knockdown of CRM1 conferred tumor cells with resistance to LFS-1107.

Results: We found that LFS-1107 can strongly suppresses the growth of ENKTL cells at low-range nanomolar concentration yet with minimal effects on human platelets and healthy peripheral blood mononuclear cells. Treatment of ENKTL cells with LFS-1107 resulted in the nuclear retention of IkBa and consequent strong suppression of NF-kB transcriptional activities, NF-kB target genes downregulation and attenuated tumor cell growth and proliferation. Furthermore, LFS-1107 exhibited potent activities when administered to immunodeficient mice engrafted with human ENKTL cells.

Conclusions: Therefore, LFS-1107 holds great promise for the treatment of ENKTL and may warrant translation for use in clinical trials.

Funding: Yang's laboratory was supported by the National Natural Science Foundation of China (Grant: 81874301), the Fundamental Research Funds for Central University (Grant: DUT22YG122) and the Key Research project of 'be Recruited and be in Command' in Liaoning Province (Personal Target Discovery for Metabolic Diseases).

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. Source data files have been provided for Figures 1, 2 and 3 as well as their associated Supplemental Figures.

Article and author information

Author details

  1. He Liu

    School of Bioengineering, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  2. Meisuo Liu

    School of Bioengineering, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  3. Xibao Tian

    School of Bioengineering, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  4. Haina Wang

    School of Bioengineering, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  5. Jiujiao Gao

    School of Bioengineering, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  6. Hanrui Li

    School of Bioengineering, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  7. Zhehuan Zhao

    School of Software, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  8. Yu Liu

    School of Software, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  9. Caigang Liu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    For correspondence
    angel-s205@163.com
    Competing interests
    Caigang Liu, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2083-235X
  10. Xuan Chen

    School of Bioengineering, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  11. Yongliang Yang

    School of Bioengineering, Dalian University of Technology, Dalian, China
    For correspondence
    everbright99@foxmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0449-0599

Funding

National Natural Science Foundation of China (81874301)

  • He Liu
  • Meisuo Liu
  • Xibao Tian
  • Haina Wang
  • Jiujiao Gao
  • Hanrui Li
  • Zhehuan Zhao
  • Yu Liu
  • Xuan Chen
  • Yongliang Yang

National Natural Science Foundation of China (U20A20381,82373063)

  • Caigang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Qing Zhang, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: Animal studies in the present work have been conducted in accordance with the ethical standards and the Declaration of Helsinki. The investigation has been approved by the Research Ethics Committee (REC) of Dalian University of Technology (approval number: 2018-023).

Human subjects: The Research Ethics Committee (REC) of Dalian University of Technology approved conduct of ex vivo assays with donated human cells (approval number: 2018-023). Normal human peripheral blood mononuclear cells (PBMCs) were obtained from blood samples collected from healthy volunteers. Approval was obtained from The Second Affiliated Hospital of Dalian Medical University institutional review board for these studies.

Version history

  1. Received: May 27, 2022
  2. Preprint posted: December 10, 2022 (view preprint)
  3. Accepted: October 24, 2023
  4. Accepted Manuscript published: October 27, 2023 (version 1)
  5. Version of Record published: November 10, 2023 (version 2)

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 408
    views
  • 72
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. He Liu
  2. Meisuo Liu
  3. Xibao Tian
  4. Haina Wang
  5. Jiujiao Gao
  6. Hanrui Li
  7. Zhehuan Zhao
  8. Yu Liu
  9. Caigang Liu
  10. Xuan Chen
  11. Yongliang Yang
(2023)
Discovery and biological evaluation of a potent small molecule CRM1 inhibitor for its selective ablation of extranodal NK/T cell lymphoma
eLife 12:e80625.
https://doi.org/10.7554/eLife.80625

Share this article

https://doi.org/10.7554/eLife.80625

Further reading

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.