Abstract

Differentiation of B cells into antibody-secreting cells (ASCs) is a key process to generate protective humoral immunity. A detailed understanding of the cues controlling ASC differentiation is important to devise strategies to modulate antibody formation. Here, we dissected differentiation trajectories of human naive B cells into ASCs using single-cell RNA sequencing. By comparing transcriptomes of B cells at different stages of differentiation from an in vitro model with ex vivo B cells and ASCs, we uncovered a novel pre-ASC population present ex vivo in lymphoid tissues. For the first time, a germinal-center-like population is identified in vitro from human naive B cells and possibly progresses into a memory B cell population through an alternative route of differentiation, thus recapitulating in vivo human GC reactions. Our work allows further detailed characterization of human B cell differentiation into ASCs or memory B cells in both healthy and diseased conditions.

Data availability

All raw fastq files and digital gene expression matrixes (DGE) are available at the Gene Expression Omnibus (GEO) repository under accession no. GSE214265.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Niels JM Verstegen

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5732-4979
  2. Sabrina Pollastro

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0950-7583
  3. Peter-Paul A Unger

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Casper Marsman

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. George Elias

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8419-9544
  6. Tineke Jorritsma

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Marij Streutker

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. kevin bassler

    Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4780-372X
  9. Kristian Haendler

    Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Theo Rispens

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Joachim L Schultze

    Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Anja ten Brinke

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Marc Beyer

    Genomics and Immunoregulation, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Marieke SM van Ham

    Department of Immunopathology, Sanquin, Amsterdam, Netherlands
    For correspondence
    m.vanham@sanquin.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1999-9494

Funding

LSBR (1609)

  • Marieke SM van Ham

PPOC (17-34/ L2263)

  • Marieke SM van Ham

German research foundation (272482170)

  • Marc Beyer

German research foundation (SFB1454-432325352)

  • Marc Beyer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Murim Choi, Seoul National University, Republic of Korea

Ethics

Human subjects: All the healthy donors provided written informed consent following the protocol of the local institutional review board, the Medical Ethics Committee of Sanquin Blood Supply, and conforms to the principles of the Declaration of Helsinki.

Version history

  1. Received: September 20, 2022
  2. Preprint posted: October 5, 2022 (view preprint)
  3. Accepted: February 24, 2023
  4. Accepted Manuscript published: March 2, 2023 (version 1)
  5. Version of Record published: March 10, 2023 (version 2)

Copyright

© 2023, Verstegen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,119
    views
  • 589
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Niels JM Verstegen
  2. Sabrina Pollastro
  3. Peter-Paul A Unger
  4. Casper Marsman
  5. George Elias
  6. Tineke Jorritsma
  7. Marij Streutker
  8. kevin bassler
  9. Kristian Haendler
  10. Theo Rispens
  11. Joachim L Schultze
  12. Anja ten Brinke
  13. Marc Beyer
  14. Marieke SM van Ham
(2023)
Single-cell analysis reveals dynamics of human B cell differentiation and identifies novel B and antibody-secreting cell intermediates
eLife 12:e83578.
https://doi.org/10.7554/eLife.83578

Share this article

https://doi.org/10.7554/eLife.83578

Further reading

    1. Cancer Biology
    2. Cell Biology
    Stefanie Schmieder
    Insight

    Mutations in the gene for β-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.